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Abstract — Hudgkin-Huxley Model are important
tool in neuronal modelling, it captures the detailed
gating properties of the ion channel in the cell mem-
brane. It describes how action potential initiated and
propagated through neurons, the neuronal unit of com-
munication. Neuronal Modelling can be computa-
tionally expensive, specially when modelling with the
high resolution level models. It becomes even more
challenging when considering tuning many parame-
ters that changes with the biological properties of each
sample, making the large-scale modelling big chal-
lenge in the field. Neural differential equations can
propose a promising direction as data-driven differen-
tial solvers, these models can combine the current ad-
vance of machine learning with the domain knowledge
of the systems. In this project, neural differential equa-
tion models are represented to solve Hodgkin-Huxley
equations by combination of neural networks Approx-
imators for gating variables of ion channels and the
differential equation of how voltage is changing cross
cell membrane.

1 Introduction

A neuron is a complex computational unit, it per-
forms and generate dexterous behaviours as a nonlin-
ear dynamical system. Our complex behaviour though
comes from the interconnection of a huge network of
neurons. In order for neuron to interact in this net-
work, it needs an efficient way to communicate with
each other. Neurons do this with electrical spikes
called action potential. Hodgkin and Huxley had in-
troduced a mathematical model that can describe and
model how the action potential is initiated and prop-
agated. [2] The model is a set of nonlinear equations
that approximate the electrical characteristics of a neu-
ron cell. For an efficient large-scale simulation and a
lower-dimensional mathematical insight into the dy-
namics, a simplified version of neuronal model was
proposed by FitzHugh [1] as a 2D dynamical system
of action potential in a neuron.
Hodgkin–Huxley model still model in a detailed

the behaviour of activation and de-activation gating
of the Na and k ion channels, which represent how
they change during the action potential. The model

yet required them an intensive tuning of variables to fit
the biological properties of each channel types. These
parameters was analytically assumed, but these param-
eters can change between different ion-specific chan-
nels, channel types, and different neuron types and so
on. So modelling complex systems of different neu-
rons will lead to differences between the model and
reality. Substituting these parts with a data-driven
approach might help avoid the extensive work of bi-
ological cell properties assumptions. Neural network
Differential equations methods provides us with tools
to deal with that. Beside that, Large-scale simulation
of groups of neurons can be computationally expen-
sive. Having an ML approach to solve the differential
equations might help accelerate the simulation. [3]

2 Methods

2.1 Hodgkin–Huxley Model

In the HH model, the properties of a neuron are de-
scribed by a set of four ordinary differential equations:
one for the membrane potential u ,and three others for
the gating variables n,m , and h. The former is con-
cerned with the voltage-dependent opening and clos-
ing of the potassion ion channel (K) and the latter two
with the sodium ion channel (Na).

The gating variables represent the probability of the
gate to be open. The equation describe the change in
gating variables as follows:

dx
dt
= αx(u) [1 − x(t)] − βx(u) x(t)

where x ∈ {n,m, h}

α and β can be seen as the number of gates that
changes its states from open to close state or verse
versa. they are called the transition rates.
The differential equation for themembrane potential

is given by combining the current passing through all
the ion channels that exist in the cell membrane.

C
du
dt
= gNam3h(ENa−u)+gKn4(EK−u)+gL(EL−u)−Iinj
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Figure 1 How the voltage-dependence gating variable re-
sponse changes with different range of applied voltage

The total set of equations is given by

dn
dt
= αn(u) [1 − n(t)] − βn(u) n(t)

dm
dt
= αm(u) [1 − m(t)] − βm(u) m(t)

dh
dt
= αh(u) [1 − h(t)] − βh(u) h(t)

C
du
dt
= gNam3h(ENa−u)+gKn4(EK−u)+gL(EL−u)−Iinj

where

αm(u) =
2.5 − 0.1 · (u + 65)

exp(2.5 − 0.1 · (u + 65)) − 1
;

βm(u) = 4 · exp(−
u + 65

18
)

αn(u) =
0.1 − 0.01 · (u + 65)

exp(1 − 0.1 · (u + 65)) − 1
;

βn(u) = 0.125 · exp(−
u + 65

80
)

αh(u) = 0.07 · exp(−
u + 65

20
);

βh(u) =
1

exp(3 − 0.1 · (u + 65)) + 1
To illustrate how the different gating variables in-

teract with the applied voltage to the cell membrane,
figure 1 shows their behaviour with changing voltages.
Using numerical methods, the solution to the 4ODE

of HH model can be shown in the figure 2 as the tra-
jectories of the membrane potential u and n,m,h gating
variables. As the model describe in the equations, the
channel gate of the K ion can be obtained by n4 and

Figure 2 The trajectories of the membrane potential u and
n,m,h gating variables.

Figure 3 The trajectories of the membrane potential u and
n,m,h gating variables.

the channel gate of Na are m3 ∗ h. Following the tra-
jectories in Figure 3 of these channels we can see the
biological interpretation of the action potential. When
an external voltage is applied, the voltage on the mem-
brane cell increases, which leads to open the voltage-
gated channels of both K and Na, thus leading to huge
flow of current, causing of the spike, then Na channel
starts to close, due to the in-activation properties of h
gate (decrease its gating probabilities with increasing
voltage), leading to decrease the overall voltage, thus
decreasing the number of opened K and Na voltage-
gated channels, that returns the voltage membrane to
its steady state again.

2.2 Neural Differential equations

As we see in the transition rates equations, it relies on
functions and constants that has been tuned analyti-
cally to fit the data. Which is has to be different from
channel to channel, ion to ion and neural region to
other, To avoid this, we can use neural network model
to compensate for these parts.
First we can try to use neural network to model a

ion channel, to see first how it model the K ion channel
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behaviour, and then incorporate it as a whole neuron
system with HH Model.
For this, we are replacing gating variable equation

below:

dx
dt
= αx(u) [1 − x(t)] − βx(u) x(t)

where x ∈ {n} in the model I used.
with a neural network model that will be trained to

have trajectories (solving ODE) that approximate the
synthesized data from the original equation.

dx
dt
= NN(u, x)

To have more pre-knowledge about the model, we
can add another function to the differential equation
that constrain the gating variable to the probabilities
scheme that it already represent.

dx
dt
= NN(u, x) + f (u, x)

where f (u, x) = A(1 − x) − B(x)

After this, we can build a model that incorporate the
gating variable approximation into the whole neuron
dynamic system (HH Model).
The total set of the differential equations will then

given by:

C
du
dt
= gNam3h(ENa−u)+gKn4(EK−u)+gL(EL−u)−Iinj

dn
dt
= NN(u, n)

dm
dt
= αm(u) [1 − m(t)] − βm(u) m(t)

dh
dt
= αh(u) [1 − h(t)] − βh(u) h(t)

After that, the best scenario would be if we could
use neural network to model all the gating variable of
n,m,h with 3 different neural network. In this case
we can make sure that no intensive work is needed to
estimate the transition rates differently in each neuron.
The final differential equation will be:

C
du
dt
= gNam3h(ENa−u)+gKn4(EK−u)+gL(EL−u)−Iinj

dn
dt
= NN1(u, n)

dm
dt
= NN2(u,m)

dh
dt
= NN3(u, h)

3 Results and Discussion

In this project, I have first tried to model the whole
differential equation as a data-driven approach, but the
result was not encouraging and themodel needs a lot of
training, therefore, I have decided to work on a hypbrid
of both data-driven and knowledge-based approach as
I showed in the methods.
The first result is the model of only single ion chan-

nel using data-driven approach. The Neural network
solver was able to reconstruct the behaviour of K chan-
nel gates by training it with synthesized data from the
ion channel model. The figure 4 shows the N gating
variable trajectories between the numerical solution
and data-driven Neural network solution, also between
the training data and data that the model has not seen
before - after the vertical line. the model was able to
perform the behaviour that the real N gating variable
will do.
Now, the second model is to use a neural network

model of a n gating variable in the Hudgkin-Huxley
model, to see how it interact with the induced voltage
(Action potential). Replacing the differential equation
of the n gating variable in the 4 HH equation should
still result of the same voltage changing and behaviour
in the cell membrane.
Using this approach, the result showed that with

some training, the dynamics is preserved, and with
more commutations capability for training, it can get
accurate.
The figure 5 represents the result of the Neural dif-

ferential equation model (n gating dynamics as neu-
ral network) with the trajectories of the synthesized
data. The model still shows some differences in the
time duration of the spike of the action potential, this
shows that the model still find difficult time capturing
the time-delay(analytically calculable with transition
rates), but was able to approximate the steady state
dynamics.

4 Conclusion

Neural differential equations can be promising tool
for neural modelling. it can provide the field with a
possible solutions for two important issues in Compu-
tational Neuroscience, which is at first that modelling
is computationally expensive not only analytically but
also numerically, and second that many detalied mod-
els requires a big pre-knowledge of the huge amount of
parameters which are biologically specific for experi-
mental approximation. In this project I have showed
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Figure 4 The N gating variable trajectories between the
numerical solution and data-driven Neural network solution

Figure 5 the N-gated Neural differential equation model
with the trajectories of the synthesized data

that it is not only possible to model ion channel of cell
membrane using neural differential equations e, but
it is also possible to model the whole neuron mem-
brane. And By using neural network to approximate
the gating variables, you are not only gaining possi-
ble computational benefits, but also you automate the
process of tuning different variables and function to
make it match the specific sample you are studying. In
future work, we can investigating more the possibility
of using neural network to approximate all the gating
variables in the system. This can be achieved in two
ways depending on the proposed use of the model, if
the purpose of the model is to be used on an unknown
biological proprieties of the sample, then the way to
go is to use 3 different neural network and train them
simultaneously. But if the biological proprieties of the
sample is already known and the purpose is to use it
in a large-scale modeling. Then we can train every
model separately, we use the knowledge of the other
gating variables differential equation in the training of
the approximated gating variables, and then change the
second one with neural network for the second train-
ing, with making the other two knowing again and so
on.

A Documentation

The code used for this project can be found at:
https://github.com/AhmedAlmijbari/HodgkinModel.jl
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